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Galerkin/Runge-Kutta Discretizations for Parabolic
Equations with Time Dependent Coeflicients

Stephen L. Keeling*

Abstract. A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and ana-
lyzed for linear parabolic initial boundary value problems with time dependent coefficients. Unlike
any classical counterpart, this class offers arbitrarily high order convergence while significantly
avoiding what has been called order reduction. In support of this claim, error estimates are proved,
and computational results are presented. Additionally, since the time stepping equations involve
coefficient matrices changing at each time step, a preconditioned iterative technique is used to solve
the linear systems only approximately. Nevertheless, the resulting algorithm is shown to preserve
the original convergence rate while using only the order of work required by the base scheme ap-
plied to a linear parabolic problem with time independent coefficients. Furthermore, it is noted
that special Runge-Kutta methods allow computations to be performed in parallel so that the final
execution time can be reduced to that of a low order method.
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1 Introduction.

In this paper, linear parabolic initial boundary value problems with time dependent coefficients
are considered. Specifically, the goal is to construct and analyze fully discrete approximations to
the unique solution u(x,t) of:

dw = —L{t)u in Qx[0,t]
(1.1) u 0 on 91 x [0,t*]
u(x,0) = «'(x) in Q,

il

where:

N
L(tyu=— ) 8:,(6;(x,1)3;,u) + bo(x, t)u.
i,5=1
Here, Q is a bounded domain in RN with 30 sufficiently smooth. Also, £;(x,t) and £(x,t) are
assumed to be smooth. Further, on €2 x [0,t'], the matrix {£;}}¥;_, is symmetric and uniformly
positive definite and £ is nonegative. Also, the initial data u® is assumed to be both sufficiently
smooth and compatible, and precise hypotheses on the required smoothness of the solution u are
made as needed.

Now, for 1 < p < oo and integers s > 0, let W*?P = W*?(Q) represent the well-known Sobolev
spaces consisting of functions with (distributional) derivatives of order < s in L, = L,({1). Also,
let || - |[we» denote the usual norm. Then, in particular, take H* = W*?2 and denote its norm by
Il - |ls- In addition, let H} be the subspace of H! consisting of functions vanishing on 39 in the
sense of trace. Further, let the inner product on L2 be denoted by (:,+), and the associated norm by
[-||. Next, given Hilbert spaces H, Hy, and Hz, B(H1, H;) represents the Hilbert space of bounded
linear operators from H, into Hj, and B(H) = B(H, H). Also, for t2 > t;, C'([t1,t2], H) denotes
the Banach space of operators, continuously differentiable to order I > 0, from [t;,%;] into H. See
Adams [1] for more details.

Now for each t € [0,2*], let L(t) be extended to be L,-selfadjoint with domain H? N H}. Also,
assume that for I > 0 and m > 0 sufficiently large, L(t) € C'([0,¢"],B(H™*2 n H}, H™)) so that:

(1.2) LD @)vllm < e(l, m)llvl|m2 Vv e H™? N H}

where L{)(t) = D!L(t). Note that here and throughout this work, ¢ (sometimes with a subscript) is
used to denote a general positive constant, not necessarily the same in any two places. Moreover, if
in a given (in)equality, there is a crucial element upon which ¢ is meant to depend, such dependence
is indicated explicitly as in (1.2). Next, introducing the L-selfadjoint solution operator T(t) for
which T(t)L(t)=Ion H2NnH} and L(t)T(t)=1Ion L;, assume thatforl/>0andm >0
sufficiently large, T(t) € C!([0, ¢t*], B(H™, H™*% N H})) so that:

(1) ITO@ollmez < clom)lollm Vo H™

where T()(t) = D!T(t). Finally, assume that for sufficiently large { > 0 and m > 0, the solution u
and the data u® satisfy:

(1.4) sup [|3¢u(t)llm < e(m, )[u°||ms -
0<t<ee

For details connected with (1.2)-(1.4), see Sammon [16].



A rough description of the results now follows. For this, let k and k denote spatial and temporal
discretization parameters respectively, and suppose that UJ is a fully discrete approximation to

u(nk) obtained according to the base scheme (1.38) described below. Now, in section 3, the error
committed by (1.38), is shown to satisfy:

(1.5) max

—1 -
oax [[UR — ™|l < e(A” + k* + hk™ 7 + h2E4 1) |u0)|a

where a = max(r + 1,2p + 2), p = min(v,q + 1), ¢ is the number of Runge-Kutta stages, and
r and v represent respectively, optimal exponents, characteristic of the Galerkin method and the
Runge-Kutta method upon which the fully discrete scheme is based. Note that under the mild
condition that either r < 2u or h? < ck, the above error is O(h" + k*). Further, it is explained
below that the methods which are most easily implemented have the property that v < g+ 1 which
makes the estimate optimal. It is also worth mentioning that inverse properties (associated with
the use of a quasi-uniform triangulation of 1) are never explicitly assumed, and as explained after
Lemma 3.8, the constructions of section 2 are required for this.

Next, section 4 deals with (1.46), a variant of the base scheme which incorporates a precondi-
tioned iterative method (PIM) for the time stepping equations (1.40). Specifically, these equations
are solved only approximately at the nth time level with say, I,, outer iterations (4.5), and j, inner
(PIM) iterations (4.11), and it is shown that the above convergence rate can be preserved while
keeping nl—. :‘::‘01 lnJn bounded independently of h and k. Hence, the order of work is asymptot-
ically as that for a linear parabolic problem with time independent coefficients. Additionally, in
[14], semilinear and quasilinear problems are considered, and the latter are treated with methods
such as those reported here to obtain comparable results.

It should also be mentioned that the discovery of the methods described below was fortuitous.
Note that there are extrapolation options other than (1.35) which are apparently more natural.
For example, D! could be replaced by T' in (1.35) since the latter is consistent with (1.39). This
idea is considered together with (1.39) in a computational section. However, under rather general
conditions, (1.5) is proved and demonstrated computationally only for (1.38) and (1.46). In fact,
it has been reported by many authors ([7], [13], [8]) that unless the solution to the differential
equation satisfies very restrictive conditions, a classical fully discrete scheme fashioned after (1.23)
cannot be expected to offer optimal order convergence. Furthermore, with regard to efficiency,
(1.39) requires the formation of ¢ new stiffness matrices at every time step. On the other hand,
(1.38) and (1.46) require only the formation of a single such matrix and, at the expense of at most
100¢~1% more storage, the recall of u — 1 of its counterparts formed at previous time steps.

In [7], Crouzeix analyzes (1.39), and with Butcher’s conditions C(p — 1) and B(v), [5] he
establishes the Ly estimate:

o5, U7 = 7 = O + keinlo),
Since O (k" + k") has not generally been observed experimentally, this suboptimal phenomenon has
been called order reduction. Note further that this L, estimate depends upon the assumption that
the stages are computed exactly. On the other hand, in [13], Karakashian considers approximating
the stages with a PIM, and proves that the above estimate holds while the order of work is kept
optimal. Also, he constructs collocation type implicit Runge-Kutta methods (IRKM’s) for which
p = v = ¢ 4+ 1. Nevertheless, such methods have limited stability for ¢ > 3. In fact, there is a
general trade-off among IRKM’s in the sense that the more stable methods suffer more from order




reduction while those which do not suffer so, are not as stable. However, when (1.39) is modified
as in (1.38), it is possible to achieve high order even for very stable methods. For example, in
section 4, an algebraically stable IRKM is used for a problem of the form (1.1), and optimal order
convergence is obtained with (1.46) but not with a counterpart based on (1.39).

Douglas, Dupont and Ewing [10] have analyzed Galerkin/Crank-Nicholson fully discrete approx-
imations for a class of quasilinear parabolic problems, proving an optimal L estimate for a method
which is second order in time. Also, this rate was shown to be preserved by an algorithm in which
the time stepping equations are solved only approximately with an optimal order of work. Then
studying (1.1), Bramble and Sammon [3] have obtained similar results for some Galerkin/Obrechkoff
fully discrete approximations, proving optimal L, estimates for methods up to fourth order in time.
Finally, note that in [9], Dougalis and Karakashian analyze Galerkin/Runge-Kutta fully discrete
approximations for the Korteweg-De Vries equation. In fact, they prove optimal Ly estimates for
some modified IRKM’s which are up to fourth order. Hence, the spirit of their work is similar to
that of the present study.

In the remainder of this section, there is a presentation of material relevant to the spatial and
temporal discretizations considered here, which concludes with a precise definition of the schemes
for which the above claims are made.

Spatial Discretizations

To make the following machinery more definite, consider the Ordinary Galerkin Method for the
spatial approximation of the solution to (1.1). Let D(t)(:,-) be a bilinear form defined by:

N

D(t)(v,w) = ) (&;(t)32,9,05;w) + (&o(t)v,w) v,w € H}.
i,j=1

Next, let S), represent an approximation subspace consisting of continuous, piecewise polynomials
of degree < r — 1, vanishing on 8Q. Then, take T,(t): Lz — S, to be an approximation to the
solution operator T'(t) defined by:

D(t)(Th(t)w,x) = (w,x) Ywe Ly, VyxE€E Sh.

For more examples of Galerkin methods satisfying the assumptions enumerated below, see Bramble,
Schatz, Thomée, and Wahlbin (4], and Sammon (16}, [17].

Depending on the Galerkin method used for the spatial approximation, let Hg be a linear space
equipped with a norm || - || and satisfying the following properties. Suppose H2 N H} C Hg and
that:

(1.6 lols < ez Voe Ha,

(1.7) llvlle < c||v]2 Vv € H?.

For example, for the method described above, take Hp = Hj. Now let {Ss}o<h<1 be a family of
finite-dimensional subspaces of Hg, satisfying the following for some integer r > 2:

(1.8) xlélgh{”v = x|l + Rllv = xll£} < ch’||vls Ywe H°NH}, 2<s<r.

Then suppose that for each t € [0,t*], a corresponding family of operators {T(t)}o<n<1 is given
satisfying:



i. Ty(t) : Ly — Sh is selfadjoint, positive semidefinite on Lz, and positive definite on Sj.
ii. For 0 < h <1, Ty(t) € C'([0,¢*],B(Le, Sp)) for { > 0 sufficiently large.

iii. For2 <s<r,0<t<t* and ! > 0 as large as required in the sequel:

®9)  ITO) - TP @l + RITOE) - TV @lle < ch*lloflo-s Yoe B2,

Hence, the restriction of Th(t) to Sy is invertible and its inverse is henceforth denoted by Lj(t).
Since L(t) is also positive definite and selfadjoint on Sy, both L;(t) and T,(t) have square roots
but it is also assumed that:

1 1
(1.10) T (ull < T (Wwlls < wl < lwle Ve Ly,

1 1
(1.11) Il < lixlle < elZZ Xl < el ZE@xlle  Vx€Sh

Also Ly(t) € C'([0,t*],B(Sy)) for I > O sufficiently large and in fact, Bales [2] has proved that for
0<s,t<t*and!l > 0:

(1.12) I1LZ TP () LE(@)x| < eD)]Ix] VX € S,

(1.13) ITEOLOGTE Wl < clloll  Vwe La.

Then using the selfadjointness of these operators, the following are straightforward consequences
of (1.12) and (1.13). For 0 < s,t < t*:

(L14) ITE ()L (Ox < clixl VX € Sh,
(1.15) ILEETI@vl < clloll  VYoe Ly,
(1.16) (LD ()% 3] < e(D)(La(t)x: X) VX € Sh.
In addition to (1.16), assume that for 0 <t < ¢* and | > O:

(1.17) LY 0)x, #) < e(ixllzl#lle VX, $ € Sh.

Next, defining the elliptic projection operator as Pg(t) = Ty(t)L(t), it follows from (1.9) and (1.2)
that for 0 < t < t%:

(1.18)  ||[I — Pe®)o|l + RlI[I = Pe(®)vllz < ch®||v]la Ve H NH), 2<s<r

In fact, with w(t) = Pg(t)u(t) and n(t) = u(t) — w(t), (1.2), (1.4), and (1.9) can be used [3] to show
that:

(1.19)  sup {|[nO@)+ AlnP )|} < ch*}jul]|srz 2<s<r, 0<2<La-s
0<t<t
Finally, it can be shown that Py = Lj(t)Th(t) is for every t € [0, ¢*], the orthogonal projection of

L; onto Sy, and that T),(t) = Tx(t)Po. Then, since I — Py is majorized by I — Pg in L3, it follows
from (1.18) that:

(1.20) (I — Po)v|| < ch®||v]|s Ywe H*NH), 2<s<r.




Now, (1.1) has the following semidiscrete formulation. Find u : [0,t*] — S}, satisfying:

(1.21) {uit(%i); = ;?fh(t)uh

where uf) € S, is a suitable approximation to u°. In [17], Sammon analyzes approximations of the
form (1.21), and with assumptions comparable to those described above, he proves an optimal L,
estimate:

sup [lu(t) - un(t)]| < ch"||u®ls.
oLise

In the present paper, semidiscrete approximations are not analyzed. Instead, (1.21) serves only as a
source of inspiration for fully discrete approximations, and u), is not even mentioned in forthcoming
proofs.

Temporal Discretizations

For the temporal approximation of the solution to (1.21), Implicit Runge-Kutta Methods
(IRKM’s) are now introduced. Given an integer ¢ > 1, a g¢-stage IRKM is characterized by a
set of constants {a;;}{;_;, {b;}i=;, and {n}]_,, and it is convenient to make the following defini-

tions: 7 T .
A = {ai;}] i1 b = (b1,b2,...,by), B Eldsl?éq{bi},

M=BA+ATB-®T, T= diag {n}, =(1,1,...,1).
1<$<q

For the IRKM formulation used in this work, choose arbitrarily, to € R, yo € R*, F: R**1 - R"
sufficiently smooth, and k > O sufficiently small, so that for to < t < o + k, smooth functions
Y,y : R — R"™ are well-defined by:

(1.22) {D;}Et(g = if,t,y(t))

q

Y(t) = yo+ (t—t)D_aiFlto+r(t — ta),¥(t)), 1<j<yq
(1.23) it

() = yo+ (t— to)D_biF(to+ r:(t — to), ¥ (t)).

=1

The method is described as ezplicit if a;; = 0, ¢ < j and implicit if for any 1, a;; # 0. Also, it is said
to have order v if for every y and § defined as above, Dly(to) = D!§(to), 0 < I < v. Butcher [5]
has developed simple conditions for the above parameters which guarantee a given order; however,
only the following is explicitly required in this work:

(1.24) A te=1 1<i<w

To see the roots of condition (1.24), let (1.22) have n =1, tp =0, yo = 1, and F(y) = —y, so that
y(t) = e~t. Then, from (1.23), {(t) = r(t) where r(2) is a rational approximation to the exponential
e~ ? given by:

(1.25) r(z) =1 - 2zb" (I 4+ zA) te.



Expanding this expression shows that r(z) is a vth order approximation to the exponential if and
only if (1.24) holds. Next, with regard to stability, an IRKM is said to be Ao-stable if:

(1.26) Ir(2)] <1 Vz > 0,

and strongly Ao-stable if:

(1.27) sup |r(2)] < 1 Vzo > 0.
2220

Also, a method is called algebraically stable if M and B are positive semidefinite. However, if an
algebraically stable method is irreducible (not equivalent to a fewer stage method) then:

(1.28) B is positive definite, and M is positive semidefinite.
One other notion of stability which is useful here is that of dissipativity:
(1.29) —1<-146<r(z) <1 Vz > 0.

Ap-stability is required of all IRKM’s considered in this work. However, in order for the ap-
proximations to decay with respect to the time step, strong Ag-stability must hold. In fact, to
guarantee decay, both (1.27) and (1.28) are assumed. Then in section 4, the iterative scheme (1.46)
described below requires at least (1.29) in addition to:

(1.30) r(z) <1- Vz > 0.

V4
Ttae

This growth condition is extremely mild and this author is unaware of any popular IRKM which
fails to satisfy it. Also, requiring {1.29) and (1.30) improves on a related result of Karakashian [13]
in which (1.27) is used. Next, note that the spectrum of A, 6(A) is related to the poles of r(z) and
in addition to the above, it is assumed throughout this paper that:

(1.31) o(A)c{zeR:z > 0}.

Returning to the temporal discretization of (1.21), let a g-stage IRKM of order v > 1 be given.
Assume also that there exists a ¢ X ¢ matrix D satisfying:

(1.32) Dle; Ae;...; AT te] = [Ae; 2A%;. . . gA%]).

Again, this author is unaware of any well-known IRKM for which such a D fails to exist. In fact,
the so-called collocation type methods are those for which D = T. Now with g = min(v,q + 1), it
follows from (1.32) and (1.24) that:

(1.33) IAD'le = D'e 1<i<p—1,
(1.34) W'D le=1 1<i<p.
Next, for 0 < n < n* — 1, n*k = t*, let the real values {62}~ be chosen distinctly, so that the

m=
q X ¢ matrices {I% }*_ are well-defined by:

uv—1
(1.35) > rrsn) =D 0<i<pu-1
m=0




as the computatlon of their components involves the inversion of the u X u Vandermonde matrix
{(67 )"y -y ,_ . In addition, assume that these parameters are bounded independently of n:

(1.36) ocmax_ {6m|+ max |(T7)il} <.

Actually, it is clear below that the natural and computationally advantageous choice for (1.35) is:

5" = m/l“; OSnS“—Z
™)l —m, p—-1<n<n*-1.

In any case, define t" =nkand 7, =t" + 6 k,and for0<n<n*-1,0<t<t*;and0<s<k,
let the following be defined on S;, = [S,]%:

s—1

La(t) = diag{La()},  LE=La(™), IR} = TRLu(E"+8ns),  ZR=Ii(h).
m=0
Now with:
(1.37) U = [I+ kL))" Po[I + kL%u®

suppose that for 0 < n < n* — 1, the approximation U} € S), is given, where Uy ~ u" and
u™ = u(x,t"). Then, let UPt! ~ u™? be given by what is henceforth called the base scheme:

Up = eUP-kALROP
(1.38)
Uptl = (I-bTAle)Up +bTAIOT

where U € S, is well-defined provided [I + kAL}] is invertible. Here, AL} for example, is
understood in the sense of composition of operators defined on S;. Note that if the temporal
discretization of (1.21) were accomplished as prescribed by (1.22) and (1.23), the following would
result:

Or = eUp—kALROD )
(1.39) where L} = diz_ig {La(t"™ + k) }.
UMttt = (I-bTA e UR +bTATIDp 1=ise

However, as discussed in the beginning of the Introduction, (1.38) is designed to improve upon
(1.39) with the indicated modification.

Now, with regard to iterative approximations, note that an efficient method is needed for solving
the time stepping equations:
(1.40) [I+kALR|UR = eUy.

According to (1.31), A can be transformed as follows:

SAS™l=A Eldsi?éq{z\g} + sggc_lsi?g {6:}; >0, 1<i1<gq 6;=00rl, 2<1<gqg.

Then V;* ~ U can be obtained by the (outer) iterations:

(1.41) (I +kALF(SYV™) = {SeU™ + kSA(LR — LRV} = R} 1<i<li,



where:

n—1
(142) Vo= > (-yrmt ( Hnt 1 ) ur 1<n<n*-1, Vo = U},
m=n—1-u, n-m
i, n=0 o, n=20
(143) Il,={ p+1-n, 1<n<ypu Un={ n—-1, 1<n<yu
1’ #+1.§ﬂ5n*"1, A, y+1§n$n*—1,
and (1.41) is started with V§* = V* provided {U}"} | un are computed as indicated below.

Now consider the simple but important observation that if:

(1.44) AiF£A;,, 13 and 6;=0, 2<i<yq,

then the block system above decouples into the following equations which can be solved in parallel:
[T+ kXLE)(SV™)s = (RY)s 1<i<yg.

Then, to avoid having to factor new coefficient matrices at every time step, a preconditioned
iterative method is used to approximate V;* with (inner) iterates, say {Vi;}o<i<j.- Further, it is

shown that there exist integers { jn}z;?,l such that:

1 n*—1

(1.45) = 2 lin<c
n n=0

while the convergence order (1.5) is preserved for what is henceforth called the iterative scheme:

Ug = Vini
(1.46)

Uptt = (I-bTA ) Up + T A-I0p.

Finally, let the initial approximation for this scheme be given by (1.37) also.

2 The Product Space Operators.

In this section, the machinery elaborated between (1.2) and (1.20) is generalized to analogous
operators defined on products of spaces on which their precursors are defined. Also, various techni-
cal lemmas are proved for later use. Now, in addition to Sj, define the product spaces Ly = [L,]9,
H} = [H}|9, Hg = [HE)?, and H™ = [H™]9. Also, denote the natural product space norms by:

q 9 1
I@le= 3 llallE}2,  1@llm={D_lgillm}7,  and (|2 =@
i=1 i=1

Then, for 0< n<n*—1,0< t<t* and 0 < s < k, let the following be defined on H? N H}:

pn—1
L()=disg(L)),  Lr=L("),  DPMe)= LTALE+8%s),  In=I0(k).

m=0




.

The first step is to construct, for 0 < n < n* -1 and 0 < s < k, operators T"(s) (T™ = T"(k))
satisfying:

(2.1)

LMs)Tn(s) = I on Ly

Tr(s)Lr(s) = I on H? N HJ.
Note that with the following defined on Ly for0< ¢t <t* and 0<n < n* —1:

T(1) = diag{T(1)}, Tr=T(")

T"(s) cannot be taken as a combination of such operators unless D is diagonal.

Lemma 2.1 For 0 < n < n* -1, £(s) € C!([0, k], B(H™*2 N H}, H™)) where I,m > 0 are as in
(1.2). Also the following hold:

(2:2) 182 27()Vllm < c(t, m)lIVlime
(2.3) I127(8) = L7Vl < c(m)klIvilms2

Vwe H™?NH], 0<s<k, and 0<n<n*-1.

Proof: The crucial observation is that by (1.35) with { = 0:

_ s-1 u-1 th+50s
I"(s) - L7 = 3 TP[L(t" + &7s) — LP) = S IT /t LW()ds
i=0 =0 "
and (2.3) follows with (1.36) and (1.2). Also, (2.2) follows using (1.36) and (1.2). [

Theorem 2.1 Let m,l > 0 be as in (1.8). Then for k small enough, and 0 < n < n* — 1, there
ezist operators T"(s) € C!([0, k], B(H™, H™*2nH})) satisfying (2.1) and:

(2.9 104 7(5)Vlimez < clbm)vllm Vv H™
Proof: Let v.€ H™ be chosen arbitrarily, and define 7: H™t2 n H} — H™2 0 H} by:
Fu= T*{v+[L" - L"(s)]u}.
By (1.3) and (2.3), with k small enough, there is an & € (0, 1) such that Vu;,u; € H™?n H}:
17 (a2 — 1)llmsz < e(m)l|{L™ = L™(s)](uz — w1)lm < &lluz — va]|me2.

Hence ¥ is a global contraction and has a unique fixed point. Thus, for every v € H™, there
exists a unique element T"(s)v € H™*2 n H} such that L*(s)T"(s)v = v. In particular, the first
part of (2.1) holds. Also, if u € H™*? N H} and w = T"(s)2"(s)u — u, then by the uniqueness,
L™(s)w = 0 implies that w = 0. So, (2.1) follows. Next, the following estimate is well-known:

P 1TV = T™||msz < (1~ &) HFT™ = T"V|lm+2-

/

v (1.3) and (2.3):
IFT™v = T™|lmsz < c(m)l[[L" = L*(&)]T™VIm < c(m)El| T "V]lm+2-



Then, for the case [ = 0, (2.4) follows from the last two inequalities and (1.3). Now, by estimating
difference quotients, it can be shown in a straightforward way that 8, T *(s) = — T™(s)3,L"(s) T *(s)
for 0 < s < k and the smoothness of T™(s) follows inductively with Lemma 2.1. Finally, after
differentiating the first line of (2.1):

9, T"(s) = -'if ( l ) T7(s)8,7*L™(s)8, T ™(s)

< )
=0
and (2.4) follows inductively using (2.2). [
Now with trivial modifications of the above, the following is obtained for the adjoints.

Lemma 2.2 For 0<n < n* -1, £"(s)* € C!([0, k], B(H™2 nH}, H™)) where I,m > 0 are as in
(1.2), and:
(2.5) 185 27(s)*Vllm < e(l, m)||V]im+2 vv € H™2 nH).
Furthermore, with m,l > 0 as in (1.8), there exist operators T"(s)* € C!([0,k], 8(H™, H™2nH}))
satisfying: B
26) 18L77() Vimsz < clbm)vlm Vv e HP
and L7(s)*T"(s)* = I on Ly, T™(s)*L"(s)* = I on H2 N H}. [
The next step is to construct for 0 < n < n* —1 and 0 < s < k, operators T,;*(s) (T, = T,*(k))
satisfying:
LR(S)T*s) = Po on Ly
(2.7) ) .
T(s)Li(s) = 1 on Sy
where Py = diag{Ps}. Note that with the following definedon Ly for 0< t < t*and0< n < n*-1:
9xq

T =dag(Th(®}, TP =T

T:*(s) cannot be taken as a combination of such operators unless D is diagonal.
Now let {Dj(t)(:,*)}o<t<t+ be a family of bilinear forms defined on Hg x Hg so that:

(2.8) Dn(t)(x,4) = (La(t)x; ¢) Vx, ¢ € Sh.

More specifically, with D,(:)(t)(-, :) = DiDy(-,-), assume that for 0< ¢t < t*,1>0,and2< m < r:

(2.9) 1D (8)(v, ) = (LO ()0, w)| < (DA™ |v]|mlw - ul&,

Yve H*NH}, Ywe H'NnH}+ S, VueH?nH],
(2.10) 1D (1) (w, v)] < c(®)l|wlgllvllz Vw,v € H,
(2.11) ellxli% < Da(t)(x x) VX € Sh.

For example, these assumptions are readily verified for the Ordinary Galerkin Method mentioned
in the Introduction. For additional examples, see Sammon [16], [17]. Next, for 0 < t < ¢*,
0<n<n*-1and 0< s <k, let the following be defined on Hg x Hg:

p—1
Da(t)(w,v) = Zq:Dh(t)(w-', vi), DR(s)(w,v) = D Da(t" + 6p8)(Crw, V).
=1 m=0
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Lemma 2.3 For k > 0 small enough, 1 >0,0<n<n*-1and0<s<k:
(2.12) 8D (s)(w, V)| < e(D)IWlellv]iE Vw,veHg
(2.13) el X||% < DR(s)(X,X) VX € S;.
Proof. Using (2.10) and (1.36), (2.12) follows in a straightforward way. Then, by (2.12), (2.11) and
(1.35) with I = 0:
8
DRI, X) = Da(e) (LX) + [ D) (X, K)dr > 1 - KX VK eS,
0
and (2.13) follows for k& small enough. [ ]

Discrete counterparts to Lemma 2.1 and Theorem 2.1 appear next.

Lemma 2.4 For 0 < n < n* — 1, £7(s) € C'([0, k], B(S)) where I > 0 is as in (1.18). Also, the
Jollowing hold:

(2.14) ITE @S La(s) T ()F] < eIl
(2.15) T2 (0L (t) — Lalt)]TE DL < clta — tal|€]
(2.16) 1T @I2R(s) - LRITE ()F] < cklle]

VfeL,, 0<tt,t; <ty 0<s<k 0<n<n*-1

Proof: The manipulations required are similar to those needed for Lemma 2.1, except that (1.13)
is used instead of (1.2). [

Theorem 2.2 Let! > 0 be as in (1.12). Then for k small enough, and 0 < n < n* — 1, there exist
operators T,"(s) € C([0, k], B(Lz,S4)) defined by:

(2.17) DR(s)(TR(s)f,X) = (£, X) VfeL;,, VXeS, 0<s<k
and satisfying (2.7) in addition to:
(2.18) 18} (s} lle < eIl
(2.19) 128 (18T, (e) L9 (X < e()lIX)
Vf€ Ly, VX€S8p, 61,02=0,3 0<t<t*, 0<s<k, 0<n<n*-1

Proof: That T,*(s) is well-defined by (2.17) follows from Lemma 2.3 and the Lax-Milgram Lemma
[6]. For (2.7), note first that by (2.8), for X, ® € Sj:

u—1 u-1

DIs)(X, @) = Y Da(t* + 60s) (TR X, 8) = D (La(t" + Sns)IRX, @) = (LR(s)X, ).

m=0 m=0
Combining this with (2.17), it follows that VX, ®, ¥ € S; and Vf € Lq:
(ZR(s) Ty (9)f, X) = DR (s) (T (s)E, X) = (£,X) = (Pof, X),

11



DR (s)(Ti*(s) LR() W, @) = (L7(s) W, @) = Di(s)(W, B).

Then (2.7) follows after setting X = [L}(s) Ty"(s) — Polf, ® = T,*(s) L}(s)¥ and using (2.13). Next,
to obtain (2.19) for the case that [ =0, set E = (Th")%[ﬂz — Z(s)](Th")% so that by (2.16):

[ - EIX|| > (1 - k)| X]| VX € S,
Hence, for k small enough:
LT L () = (LR (TN - BT (TR L3 (0).

If 6, = 6; = , the first case of (2.19) follows with (1.14) and (1.15). Otherwise, (1.10) is
used. Now by estimating difference quotients, it can be shown in a straightforward manner that
s T, (s) = —Ty"(s)3s L}(s)T;*(s) for 0 < s < k, and the smoothness of T,"*(s) follows inductively
with Lemma 2.4. Next, after differentiating the first part of (2.7):

01(1\ 5! T 0 < (1) por i 3 5 (91— 3 3 ()5 T o
LT LR M) = -3 | ;) (LR OTrE) LR ONT ()9, L(s) T (DNILE (93 Ty (s) £y (8)]

=0

so (2.19) follows inductively using (2.14). Finally, by setting 6, = 7, 62 = 0 and X = Aof in (2.19),
(2.18) follows with (1.11) since T;*(s) = T*(s) LR(s) T, (s) = T,7(s) Po. [
Next, certain inequalities related to (2.9) are needed.

Lemma 2.5 For k > 0 small enough, the following hold:

(2.20) 1905 (s) (v, w) — (8.2 (s)v, W)| < e(Dh™ H[V]|mllw — ul g

(2.21) |80 (s)(w, V) — (W, 8, 27(s)*V)| < c(DA™ H|[Viim[w — ull£

]
l -tAn 1 t+n m—
(222 |} ( ! ) B DR(s)([8:T™(s) — BETP()IE, X)| < c()A™ |€llm—2l|X — ull5
=0
WweH™nH], YweH?nH}+S;, Yue H nH}, vfe H™, VXe€S, 2<m<r, 1>
0, 0<s<k, 0<n<n*-1.

Proof. First, note that:

u—1
3, Dp(s)(v, W) — (3L 2"(s)v, w) = I (67)' (D (t" + 87's) (TFv, w) — (L)(t" + 87s)T v, w)]

=0

so (2.20) follows with (2.9). Also, (2.21) follows similarly. For the remaining inequality, the key
observation is that by (2.17), the left side of (2.22) is equal to:

|8, DR (s)(T (), X) — (£, X)]| = 18, (DR (s)(T(s)f,X) — (£7(s) T ()£, X)]|

and (2.22) follows using (2.20) and (2.4). .
The groundwork for a generalization of (1.9) is now complete.
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Theorem 2.3 For k > 0 small enough, the following holds for 0< n<n*-1,0<s<k, >0,
and2<m<r:
(228)  04T"(s) = TRV + BIGT™(s) - TA(EVlE < (DA™ Vilmez Vv € H2
Prooft With 2 < m < r, let v € H™ 2 and define X; € Sj to be the closest to 6£7_'"(s)v in the
norm || - ||g. Then, define:

E' =3 Ts) - T(s)lv=[8.T"(s)v - X|] - (LT, (s)v ~ Xi| = E} - EL.
By (1.8) and (2.4):

I Eoll < e(h™ H[vllm~a2-

Next, by (2.12) and (2.13):

cllEkllE < D (s)(E, Bn) = D7 (s)(Eo, Er) — DR (s)(E', By) < ellEollell Erlle + 1D (s) (B, By
By (2.22), with ill-defined sums understood to be zero:

1 -1
@ sl = (2 (§)arme@.m -3 ( | e s
=0 =0
-1

< (DA™ HV]m—2l| B & + cl| BRI D || EF |2
=0

So, the indicated estimate for ||E||g follows inductively from the last three inequalities. Now, a
duality argument is used to complete the proof. Define X} € S, to be the closest to T™(s)*E! in
the norm || - ||g. Then, with ill-defined sums understood to be zero:

1
IE? = Z( I ) (%, 0,7 L"(s)* T™(s)* B') — 8,7 D (s) (E*, T"(s)" E')]

t
=0

! !
+ 2 ( f ) B DR(s) (B, Tr(s) E' = X}) + 3 ( f ) 3= Dp(s)(E*, X})

1=0 =0
-1 4

- > ( : ) (B}, 3\ 5L™(s)* T™(s)*'E") = D _F;.
=0 j=1

By (2.21) and (2.6), F satisfies:

i
|Ful + [ B2l < cQRIE N Ells

=0
while the case for F; follows with (2.12), (1.8), and (2.6). Then, by (2.22), (1.8), and (2.6):
|Fs| < e()h™ [v]|m—2lI X} — T"(s)* E'l|& < (DA™ V]| m-2|| E'||.
Finally, by (2.5) and (2.6):

-1
[Pyl < cDIE D NE.

i=0
Now (2.23) follows inductively. .
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3 The Base Scheme.

In this section, the base scheme (1.38) is analyzed for the approximation of the solution to (1.1)
and (1.5) is established. That the stages are well-defined depends on the next lemma.

Lemma 3.1 Provided (1.81) is satisfied, [I + kAL}] is invertible, and for k small enough,
[I+ kALR) is as well. Also the following hold:

(3.1) (L) [T + kALE X < €]l X,
(3-2) I(kLR)™ (I + RALR]™ (kL)X < <X,
(3-3) (kLRI + kALT] T (RLR)X]| < | X]l,

VX €S, 0<0<1, 6,,0,=0,%; 0=—6,=+} 0<m<n*, 0<n<n*-1

Proof. The invertibility of [I + kAL}] and the estimate (3.1) involve a spectral argument after A
is transformed to Jordan form, and the details are provided by Karakashian {13]. Now set:

Ey =[I+ kALY kA(L} - 2}) and Ey=kA(L} - )T + kAL !

so that: ) B ) . .
(LR) 21+ EALRNT)2 = (I + EALRI — (L})2 Ex(T)2),

(TP + KARRNLR)? = [T - (T,")E B (L) 5[ + kAL
By (3.1) and (2.16):

(2R3 BT X + [[(T7)  Ba(L£5) 53X ]| < ckl|X| VX € S

Hence, for k small enough, [I + kAL}] is invertible. Next, for 6; = 0, £}

(kLR)E(L +KALR) M (kL) = [I - (L7)F B2 (T 5] (kLR)P* 3 (1 + kALp] ™
and (3.2) follows for §; = }. For ; =0, £3:

(kLR (I + RAZR " (kLR)E = (kL7 5 [1+ RALY) M I — (T3 By(L7)3]
and (3.2) follows for 6; = ;. Now, for the case #; = 6z = 0, with X € S}, chosen arbitrarily:

X% < [+ kAZFIX|® + 3IX|® + k|(AZEX, X))
Then with ¥ = (£7)3X, by (2.16):
(AZEX,X)| < (A%, ©)| + () 525 — LRN(T)E @, AT®)| < c(1+ k)(£5X, X).

Also by (3.2) with 6, = 1, 6, = O

l(kL7)2X]| < e|l[I + kAZR)X||
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and the remaining case for (3.2) follows after combining the last three inequalities. Finally, using:

(RLF) I+ kALR) (kLR = [(LR)* (T ) (RLE) (T + RALETH(RLT) 2 [(T) = (£7)™]

(3.3) follows with (1.14), (1.15), and (3.1). u
Now, for the sequel, let the following be defined:
nEU’?_wn, h=u - W

PR =T — kbT LRI+ kALY e, Rp=1-kbT LRI+ kALR] e,
p=1 st

a(s)= D D‘eaiu"—i!—, (0<s<k) u® = u"(k),
m=0

@™(s) = TM(s)L™(s)u"(s), (0<s<k) @" = @™(k).

After some straightforward calculations, the following error equation is established:

p—1
£t = Rpe™ + kbTLR[I+ kAL @™ — ew" — kA D Thedw(rh)}
1 m=0
u—
— kbTA™YI + KALP| " AR Y TR L(r2)[a" — eu(rR)]
7;1,:0
e
(3.4) — kbTATN I+ EALR|2AY  T7edi{[Pr(rR) — Polu(ri)}
a1 m=0
— {w" — Wt — kT ) Tredw(rR)}
4 m=0
= RPEM+D YP = REE"+y" 0<n<n*-1.

=1

Now, stability is to be established in the following norms, which according to (1.11) are well-
defined for 0 < n < n*:

(3.5) lxllla = {00 %) + H(ZEx, X} X € Sh.

Also, from (1.16) with [ = 0, it follows that these norms are equivalent:

(3.6) erllxll < lxlln < callxdle YX€ESh, O<mn<nt.

As in section 2, let the following be defined in the natural way for the product spaces:
q
(Q"I’) EZ(‘ﬁiﬂbi): ”QH = (Q’Q)% Q,‘I’ELz,
=1

q
11X, = Nl s X € S,.
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Finally, (3.17) follows after using (3.7) and (1.26) in:

1(eZ)E RRE™M < |[(kLR)F(RF — rR)(LR) ™ 3)( L) 5 €™ + lIrR (kL) 7€M

Next, (3.15)-(3.17) are used to obtain (3.13). Suppose that ¢; is small enough that c; < 1. Then,
assume that ko > O is small enough that if § = (1 — ¢1)/(1 + csko) > O, then cz + 8 > 1. Next,
multiply (3.17) by 8 and add the result to (3.16). With ¢s = ¢z +8—1>0,and 0< k < ko:

IRREM® + (1 + cs)|(RLR)F REE™ < €7
By (1.11), there is a cg > 0 such that:
cokl|RREM < esl| (kLT REEI%,
Also, by (2.15), with x™ = (kL} ) RRE™
IR RREM? = X" + (TR LR - LRI EX™, X™) < (1+ crk)||(RLR) RRE™-
From the last three inequalities, it follows that:
(1+ cak)|RFE™I? + (1 + Jes) (1 + exk) M |(kLE) T REEM < (€7l

So assume that ko above, is also small enough that (1 + %cs)(l + ceko) "1(1 + c7ko) ™! > 1+ €, for
some &1 > 0. Then (3.13) follows for some ¢ € (—cg,0). =
The next two lemmas are useful in subsequent consistency estimates.

Lemma 3.3 Let tg, t1, t € [0,t*] and |tz — t1]| < ck. Then, for integers m,l > O:

(3.18) 2P, L4 (to) 3w ()l < c(D)llullaqa) 6=0,3
t2
(3.19) IE] < e(D)(E™ + h2k™)|[e]|21, E= /t (t2 — t)™3kw(2)dt.
1
Also, there exist Ey and E; such that E = Ey + E, while:
(3.20) [k Ln(to)] 7 Exll < c()hE™ 5+ [u0||304 i=0,1
(3.21) Ik Ln(to) Bal| < c()E™ ¥ u%20144) i=0,1

Furthermore, for 0 < n < n*:
(3.22) NEN, < c()(E™ + hk™ 5 + h2E™)||u”) 2.
Proof: By (1.6) or (1.17), (1.7), (1.19) and (1.4), for 0< t < t*, and § = 0,}:
IZ4(to) k()] < cllofw(t)lle < cllain(®)lz+ clldiu(®llz < e()(h+ Dllwllzpsy)

which gives (3.18). Next:

t: t2
E = (t; — t;)™0: In(t1) - m/ 2(tz — )™ 19 1n(t)dt +/t (ta — t)™dtu(t)dt
t 1
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and (3.19) follows with (1.19) and (1.4). Now, define:

B = / ® (t — £)9[w(t) — Pa(to)u(t))dt
= ~(t2 — t2)™8; w(t1) — Pe(to)u(ts)] + m / (t2 — )™ "8~ [w(t) - Pg(to)u(t)]dt,
E = / (tz — £)™Pg(to)dbu(t)dt
= —(tz — t1)™Pg(to)d} 'u(t;) + m /t tg(tz — t)™ 1 Pg(t0)d; tu(t)dt.
By (1.17), (1.19), (1.18), and (1.4), for i =0, 11:

L m+L+i —1+4 —14i
IRZAtOFELl < o™it sup ([ n()lls + [T - Pa(to)}dtu(t) e}

< C(’)km+%+ih||"0|12(t+i)-

By (1.2) and (1.4), fori =0, 1:

IKEn(to) Bol < k™% sup |L(t0)0} Hu(@)] < c(Dk™ g

Now, since E = E; + E3, (3.20) and (3.21) are established. Finally:

i i
(kLRE, E) < ZI(kLR)Z Eall” + 3| (kLR) % EI* + FIIRLRE: | + ZI|E(®

and (3.22) follows after combining this with (3.19)-(3.21). n
Lemma 3.4 The following hold for 0< s <k, and 0 <t < t*:
(3.23) A58, (s)I| < elju’llza 0<I<p-1, 6=03
1
(3.24) 8% @n(s)ll + All L5 ()95 @"(s)I| < ch*||u’|zu-

Proof: From (1.17) or (1.6), (2.18), (2.2), and (1.4), it follows that for 0<I< pu—1and § =0, }

! I ¢
l4@alen@)l < I TRl < ML YN 2w
=0 1=05=0
1 p—-1

(D2 _lorure™ i < e()]jullza

3=0m=j

which gives (3.23). Now, since 844"(s) = 0, from (2.23), (2.2), and (1.4), it follows that:

IA

"
losan(s)ll = [8¥@(s) — wr(&)lll < eQ_lokHT(s) — T ()ION[27(s)a"(s)Il
=0
Lt ' .. . “_1“—
< kY3 llaiILr(e)egune)ll < ek S lopunsmilly < ch?|ulz,.
$1=05=0 7=0m=j
The remaining component of (3.24) follows similarly, after using (1.17) first. n
The order of consistency is established in the next four lemmas.
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Lemma 3.5 4} of (3.4) satisfies:

(3.25) 1971l < ck(k* + hE™ % + R2E4" ") [ulla(ur)-
Proof: First, it is proved that:
(3.26) ala™(0) = D'edlw™ 0<i<pu-1

Now, the result of differentiating L3(s)@"(s) = PoL™(s)a"(s) is
L -l (1 - :
BPIACA ( : ) Ly (e + 8s)aian(s) =
=0 m=0
POZ[ Zrn (5n)l—t] ( ) ﬁ(l_')(t" + 5n8)ZD163 (] J——t

=0 m=0 j=t i)!
Letting s — 0, with (1.35), it follows that for 0 <! < pu —1:
-1
~n -1 —1) () i, qt, n i ! I-f)  nyqi_n
Lratam(0) = POZD' ( ) LE) (") Diediu™ - ;)D’ ( ; ) L9 ()aiam(0).

Then (3.26) follows inductively with:
-1/, _ .
= POZ ( ) LE9@maiun -y ( ; ) LI aiwn
=0
which results after differentiating Ly (t)w(t) = PoL(t)u(t). Therefore:

pw—1

K
" — ew" = ZD'eaiw"l—' + E, E= i 1)'/ (k — s)# " 1akan(s)ds.
I=1 B
Next, by (1.35) and (1.33):
— A 141, n K — L1, n kT
kAZOI‘" nedw(rl) = kAlZ:[Z T2 (67)edtt w"l— +F = IZ:AD edtwt——+ F
m= 0 m=0 =

= ZD’eagw — + F, ZAI‘" / (rr — t)P- 23k w(t)dt.

EDL 2)'

Now define: 3 ) . . . .
E=k3bT AT I+ kAL M RLR)TA(TY) 3 LR(T)((LR) 2 ).
so that by (3.2), (2.14), and (3.24):

NEl, < ck?||(£3)?E|| < cku+%03ugk||(£;:)%a:‘w"(s)n < chk#t3||u?|z,.
S8

Next, by Lemma 3.3, let F = F; + F; where with (1.36):

1(kLR)F ALl < chR** ([0l kLR Pl < ck**H[ull2ur1),

20

e e




and: .
NFll < e(k* + hkE3 + BEH1) [0z
Then, define:

F o= 8TAY I+ kAL N (kLR) AT ELR — LEN(TME[(kLR)3 F)
+OT AT + kARD Y (KLD)3A[(k L) 2 Fy] + bT A I+ kALD] 1 A[KL}F,)

so that by (3.2), (2.16), and the last three inequalities:

E Il < kil Flll, + cll(kLE) Fall + cllELEFel| < ek(k* + hE#™3 + R2R#1) [0 o).
Now since ¢ = E — F, (3.25) follows.
Lemma 3.6 7 of (8.4) satisfies:
(3.27) 93 lln < kP 6 llagutr)-
Proof: Define v(s) = L™(s)a"™(s) so that with ill-defined terms understood to be zero:

ata(s) = Z( )Zr [(5”)’*'5“*"@”+6"s)ngD’a e

=0

Letting s — 0, with (1.35) and (1.1), it follows that for 0 <! < p—1:

l p—-1
9,3(0) = ( ') (3 T (8n) 1 D%l (")0fu™ = ~ D'edit u™

=0 m=0

Next, by (1.1) and (1.35):

“_1 M'—l “__1 “_ kl
SoThL(m)eu(rs) = - zr;;,eatu(f;) = S (S eyttt
m=0 m=0 | =0 m=0

5 prignk’ = 154+1
= —?—%Dleaﬁ' uﬂ_“_ - P, = (“ — 1)' EP" /;,, (1‘,’,: - t)#— 3: U(t)dt.

Hence by (3.2):
¥zl < k(I E] + |-

Now, by (2.2) and (1.4):

[ -1
il A N Y7 & L VORE. 1 F T 0% u i, #11,,0
HEN < ck*Y_ sup 1347 L™(s)aa (s}l < ek 3 _l1afumllz < ckh|lu®lla,.

21



Also, by (1.36) and (1.4):

IF)| < ek sup [185* u(t)l| < ckllullzqurn)
0Lt

and (3.27) follows from the last three inequalities. n
Lemma 3.7 9F of (3.4) satisfies:

(3.28) 3l < ckh7l[wlrse.
Proof. By (3.2) and (1.36):
p—1 u—1
N3, < ck D N10:l(PE(rn) — Po)u(rm)lll < ck X {lIden(rp)ll + IIlI — Poldeu(ra)ll}
m=0 m=0
and (3.28) follows with (1.19), (1.20), and (1.4). m
Lemma 3.8 ¢} of (8.4) satisfies:
(3.29) 1950 < ekl + R 5 + B2RA) 0.
Proof First:

l
Wl W = Za I; + E, E= —/ t"“ — t)#aE 1y (t)dt.
=1 :

By (1.35) and (1.34):

-1 B ki1 p-1 JASS]
kbT E I'pedww(ry, ZbT[ Z I (67)edittwnr—— TR F = ZbTD'eai"'lw"T +F
m=0 m=0 : 1=0 :
£ K [P g 1
= Zagwnﬁ + F, F= oD > 8Trpe / (r2 — t)r 194w (t)dt.
=1 ) K ' m=0 e

Hence ¢f = —~E + F and (3.29) follows after applying Lemma 3.3 to E and F, and using (1.36) to
obtain inequalities of the form (3.22). u

With the consistency complete, it is now appropriate to discuss the development of the tech-
niques used. First, it is possible to construct an error equation alternative to (3.4) which circumvents
the constructions of section 2. However, this requires inverse properties. For example, one option
involves the following replacements:

u-1 ! pu—-1
k _ . _
o™ — 12_(:) D’eaiw"ﬁ, Yy — kbT A 1[I + kALY 14 ,,,Z::o TR L) [@™ — ew(rr)]-

Then in the proof of Lemma 3.6, 9(s) is changed to L?(s)@™(s), and bounding derivatives of the

latter involves bounding products of the form Ls:')(s)T,Ej ) (). This can be accomplished using inverse
assumptions as demonstrated by Bales [2].
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Also, the original idea for overcoming the suboptimal convergence rates mentioned in connection
with (1.39), was to find ¢ X ¢ matrices {D;}}-} with which the following would lead to optimal
convergence estimates:

v—1 v—1 v—1 1
k
S reen)=n,  0<I<v-1 DI NGET DY D,gg"(t")l_'.
m=0 m=0 =0 :
However, attempts to prove an optimal order of consistency have repeatedly led to the following
conditions for the matrices {D;}¥7)':

Dge = ¢; DiDje = Dirje, 0<14,5,i+3<v—1; IAD; je=Dje, 1<I<v-1.

Consider for example, adapting the proof of Lemma 3.5. Unfortunately, even though the number
of unknowns matches the number of constraints in the equations above, it is shown in [14] that
they can be solved only if v < ¢+ 1.

Now, (1.5) is established in the following for (1.38).

Theorem 3.1 Under the conditions of Lemma 3.1 and either Proposition 8.1 or 8.2, {UR}7_, are
well-defined by (1.87) and (1.88), and the following holds:

(3.30) max ||[UF — u™|| < c*(h + k¥ + hk*™ % + R2E41)||u) 4.

o0<n<n*

Also, unless ¢ < 0 in (8.9), c* depends exponentially on t*.

Proof Set E={(h" + k* + hkF—% + h%k#~1)||u%|4]2. Then, combining (3.9), (3.25), (3.27), (3.28)
and (3.29) for (3.4):

e+ IR 4 < (1 +ER)IEME + 1k B 0<n<n’ -1
After dividing this by (1 + ¢k)**! and summing, the result is:
1E™E < (1 +ER)71€°NE + ealel M1 ~ (1 + Ek)™ B 0<n<n

Now, according to (1.37), [[+kL3]¢° = [Po— P3]u’. So with (1.20), (1.18) and a spectral argument,
it follows that:

(3.31) €N < elllPo — PRI + kLa) ™ [Po — PRlu’ll < ch”[[u°]],.

Then, (3.30) follows with (1.19) and the last two inequalities. [

4 Iterative Approximations.

In this section, the iterative scheme (1.46) is analyzed for the approximation of the solution to
(1.1), and (1.5) is established. First, a brief discussion of Preconditioned Iterative Methods (PIM’s)
is given. See Hageman and Young [11] for more information.

Let H be any finite-dimensional Hilbert space equipped with an inner product (+,+)g and an
associated norm || - ||g. Also, let @: H — H be H-selfadjoint and positive definite, and suppose
that an approximation is required for the solution z* to:

(4.1) Qz* =b.
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Then, suppose that Qo: H — H is H-selfadjoint and positive definite, and that solving:
(4.2) Qoz=10>

is relatively inexpensive. Furthermore, assume that Q and Qg are equivalent:

(4.3) p1(Qoz, z)r < (Qz,z)m < p2(Qoz,2)H Vz € H.

The operator Qo is called the preconditioner and the PIM’s of interest in this work are those with
the following properties:

i If {xj}3-’=0 are given approximations to z* of (4.1), then calculating x4 only involves com-
puting Qz, Qoz, (Qz,z)n, and (Qoz,z)y for certain z € H, and solving equations of the

form (4.2).
ii. There is a smooth decreasing function o: (0,1) — (0,1) such that o(1) = 0 and if (4.3) holds,
then:
1 . 1
(4.4) 1Q¢1=" — z;lllm < clo(pr/p2)1QE (=" — o]l a-

For example, the Preconditioned Conjugate Gradient Method satisfies the above properties, and it
is popular for having o(s) = (1 — v/s)/(1 + +/s) as opposed to say (1 — s)/(1 + s), which is offered
by various other PIM’s.

Now, the rough discussion prior to (1.46) is expanded with more details. First, suppose that
for 0 < n < n* — 1, the approximations {U*}%_, have been computed using methods described
below, and recall tha.t an efficient procedure is needed for computing U defined by (1.40). Next,
let V denote an initial approximation to U* given as indicated in (1.42). Now, instead of actually
computmg {Vi"}o<i<1,, as suggested by (1 41), proceed as follows. Let a sequence of positive integers
{Jn}"_ ! be specified. Then, suppose in an inductive fashion, that for I > 1, V, 1,;, has been

computed from j, PIM iterations as prescribed below, and let Vl" be defined by the outer iteration:
(4.5) [1+kALF)(SV™) = {SeU™ + kSA(L} — 2P)Vi"y .} 1<i<li,

with the understanding that f/o','j,. = V. Letting n and I be fixed, (4.5) can be written in the form:
(4.6) [+ kXLl = ¢i — kO; Lirhi—y 1<:+<gqg

where 9o = 0, ¢; = (SV;*);, 1 < i < ¢, and according to (1.35) with [ =

-1
(4.7) = [SeUP + kAS Z Th(Lr— L™V, ke

m=1

The natural preconditioning for (4.6) involves [I + kL9] which, accordmg to (1.16) and (1.31), is
equivalent to the operators of (4.6),1. e.,for1 <i<gand 0< n < n*

(4.8) pr(I+kL]x, %) < ([ + XLRlx, x) < pa([ + kL3]x, X) VX € Sh.
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Now, to cover the case that A is not diagonalizable, define 1,7;,- with:
(4.9) [1+ kX LR = i — k8 LY, 1<i<yq

where i = 0. Also, to obtain QZ‘J" for 1< i<gq,set 2= (5‘71'—'1,1',.):’ and let iterates {12.’ Yo<i<in
be given by a PIM with preconditioner [I + kL%]. Then as (4.4) follows from (4.3), from (4.8) it
follows that:

(4.10) [ ~ ¥lllo < clo(or/p2) Pl — $2lo.

Finally, take ¥ = (t1,%2,...,%,)7 and U= (J;{,J)%,,@Z)T so that 17{‘ = SV and inner
iterates for (4.5) are defined by:

(4.11) Vit =V"4,. Vr=8T1, 1<5< g
Now the next objective is to show that:
(4.12) 0% — ViGalllo < (ck+ clo(pr/p2))I0R — Vi, lllo 121

Then, given some gg > 0, 3, is chosen so that:

(4.13) NOR = V% Mo < BallOF ~ Vit 15l 111y,
where: ,

ck, 0<n<yp
(4.14) fn < { ot"l, 0<n<n*-1.

From the last three inequalities, it follows that the integers { .1’,.}"_'__'01 may be chosen to satisfy
(1.45) as claimed in the Introduction. First, the outer iterations (1.41) and (4.5) are shown to be
well-conceived.

Lemma 4.1 With U given by (1.40), the following holds:
(4.15) 0% — Pallly < <klllT} - alllo
for every V1, Vy € Sy, satisfying:
[I+ kALY V, = eUR + kA(LR — LRI
Proof Since:
Up = Vo = (I+ kALE (kLD AT ELE - ZRIT) 2 (RLR)3 (T ~ Va).

(4.15) follows with (3.2), (2.16), and (3.6). u
The next lemma shows that {V, }i>0 converges to Vl at a rate which reflects (4.10) whether
or not the right sides of (4.6) and (4 9) are the same.

Lemma 4.2 With V", V"% , and V7 given by (4.5) and (4.11):

vr «

(4.16) V" = Vi llo < clo(pa/p2)}IIVP™ = Vilbillo-
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Proof: Letting o = o{p1/p2), with (4.10), it follows that:
Wi = 9fllo < Nl — alllo + i — Billo < N = illlo + eo?|l1gh — B2

< (14 o)l — Billlg + co?|lles — B2lo-

Subtracting (4.9) from (4.6), with (3.6), (1.31), and a spectral argument, it follows that:

Nl = GllZ < ellll + kX LP ™ k0 L7 (i1 — i D2

A

c({[T + ELP)(RLR)IT + kALP "2} (KLY 3 (Wim1 — 1), (KL})3 (W1 — 91,))

A

IA

ellli-1 - %7, 13 1<i<yg
Now, the last two inequalities give:
s — 9" lllo < elllvir — i 4lllo + co™ |l — %Ml
from which it follows recursively that:
~ o " ~
s = 9 lllg < eo®™ 37 liom ~ daulllo:
m=1

Then (4.16) follows after recalling (4.11) and that V;* = 1, (]
Finally, (4.12) is established in the following.

Lemma 4.3 With U defined by (1.40), the sequence {17,3-"}120 satisfies (4.12).
Proof: Applying Lemma 4.1 to (4.5):
TR = Vtlllo < ekllTR = Vi24 .o

Using this with (4.16) and (4.11):

W=V e < co™ V2= Ville = co™IV» = V25 o
< e {|[Tp - Voo + TR - ity llo} < com(ck + D)ITF - V2, S Mo

Now, (4.12) follows after triangulating with 17,". [

The next objective is to show that the convergence rate (1.5) can be preserved even when
{ _1',,}";"01 are chosen so that (4.13) and (4.14) hold. So additional stability and consistency argu-
ments follow. First, define:

"=U-w" and Y" = Rpw"™ — w1l
where $™ is as in (3.4). Now, according to (1.46) and (1.38):

Uptt - RpUR = AN - OF),
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so 1t follows that: .
(4.17) "= Rpe™ + 9" — T ATY TR - UF).

By (4.13) and (1.46), (U} — U}') can be estimated in terms of (Op - V). So, the error equation
(4.17) is supplemented with the following one, which is obtained from (1.40) and (1.42) after some
straightforward calculations:

[7'?—"70" =

n—1
DY (—1)"-"*( ot 1 ) [T +kALF] RA(R] ~ 2)T + KAZp] e

m=n—1-pu,

n—1

+ [I+kAZR]™ 32 (—1)"""“( “"_1)[5"‘“—5”‘]

n—m
m=n—1-pu,

n—1

- 2 (pm (“"H)(Uh or)

m=n—1-p,

- nf (—1)"-m( Eatl ) [I+kALR)'kA(L] — L)1+ kALP)?

m=n—1-u, L
u—

x{@™ — ew™ — kAZl"}"eatw(r‘."‘)}
(4.18) =0

n #—1
-k X (—1)"-'"(’;"_*,,1)u+kAz;:r1APoZrz"£(r:”)[am—eu(r:")l

m=n—1-—pu, =0

n p—1
-k ) (—1)"-'"(',‘,"_*,,1)[I+kAZ;:‘l-lAPoZr:"at{[Pw:")-Pdu(r:")}

m=n—1-—p, i=0

S e A L i

m=n-—1-u,

p-1

- [I+kALR? i (-1))~m (“"H ){w — ew™ — kAY TI'Tediw(r™)}

m=n-1-p, =0
8
>.er 1<n<n*-1

Before analyzing these error equations, a few adjustments must be made in Propositions 3.1 and
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3.2 for the following stronger stability inequality:

- 1 e -
419 Mg+ lE,, < (+eR)s™IE — ol — rplae™I2 + k=20 — TR
4.19

+ck[(R" + k¥ + Rk T + h2k#1)||u)|,]? 0<n<n*-1.

Proposition 4.1 Let (1.29) be satisfied. Then there are constants co > O and &, such that (4.19)
holds. In fact, € < O if (1.27) holds and c(1) of (1.18) is small enough.

Proof. By the same manipulations leading (3.10), for (4.17) it follows that:
(1 = esk)lls™ 241 < Nrme™ s + € eaklls™ | + k™Y1 T7 — TR + ekl
By (1.26), I — r} has a square root. Hence, taking x™ = [I + kL} %g", with (1.29) it follows that:
h q h
1 nii n
leRe™ % = 1x™1® = (T + R = R X" 1 = w217 x™) < Mls™I3 - 8(11 - rRlx™, x™).-
Using (3.12), there is a ¢ < 0 such that:
=([T = #R1x" ") < 0rRx, x™) + 31+ 2RI — [1x71” = ekllle™I7 — 20T = rR1x™ x™)

where & < 0 if (1.27) holds. Now with € > 162+ cs + €7 le1, and co = 36, (4.19) follows after
combining (3.25), (3.27), (3.28), (3.29) and the last three inequalities. n
As with Proposition 3.2, ¢ < 0 is guaranteed for (4.19) by the following.

Proposition 4.2 Let (1.27) and (1.28) be satisfied. Then, there are constants co > 0 and ¢ < 0
such that (4.19) holds.

Proof. In the proof of Proposition 3.2, replace £&™ with ¢", and ¢ with ¢ — ¥T A~ (TP - U ™).

Then with € = %—(cz — ¢1), redefine 8 = (1 — ¢; — 2¢)/(1 + ¢sko) so that the last part of the proof is
readily changed to give the following instead of (3.13):

~ L
IRRS™ I + (1 + en)ll(k L) T R3™? < (1 + ER) g™, — el (kLR 7¢™2.
As with (3.14), it follows that:
Ne™ M < (X +ER)™IE — e(kLis™, ) + kY| T — TRI% + ek~ l¢ I

Next, since » > 1, r(0) = 1 = —¢'(0). So, there is a co > 0 such that for all z > 0, r(z) is greater
that the linear function 1 — 3%z, i. e., —ez < —2¢co[l — r(z)], V2 > 0. Also, using (1.26), co can
be assumed small enough that —e < —2¢q[1 — r(z)], V2 > 0. After multiplying the latter by z and
adding the result to former, it follows that:

"E(kth, X) < _CO([I+ kLZ][I - ’)?]X; X) VX € Sh.

Hence, (4.19) follows with (3.25), (3.27), (3.28) and (3.29) and the last two inequalities. n
Now, estimation of the terms of (4.18) begins.
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Lemma 4.4 {87}, of (4.18) satisfy:

3 n—1 n—-1
(420) D_l6Flla<e 3o (™ = ¢™lm+ 0T = Ollm} + ek 22 Ms™lllm-
=1 m=n—1—pn, m=n—1—pu,

Proof. First, note that:

er = "f (-1)"-m(""+ ! )[I+kA£"] (kLp)3 A

m=n-~1-u,

X (TP (2R — £7) + (L3 — L) + (L] = IO (L) 5 () 3] (kL) 3 [T + kAL Leg™

So, OF is estimated using (3.2), (2.16), (2.15), and (1.15). Also, estimates for 63 and 6% follow
with (3 2) and (3.6). n

Lemma 4.5 {87}, of (4.18) satisfy:
6
(4.21) 2 167l < ck(h™ + k) ||u’la-

Proof: Recall E and F defined in the proof of Lemma 3.5. By (3.18), and (3.23):
IEN + 1Pl < ek*llwll2gu+n)-

So ©% can be estimated using the techniques applied for the estimation of 8F. Also, the same
manipulations used to prove Lemmas 3.6 and 3.7 give corresponding estimates for 87 and 6. =

Lemma 4.6 O} of (4.18) satisfies:
(4.22) 1871l < ck(k +hk*~ 7 + h2E*1)][ulz(ur1)-
Proof: By (3.26),forn—1—p, <m<n—-1:

™= E™+ F™, Fm= / (k — 8)*~13kw™(s)ds

= (n— (u—1)

and taking (m — n)¢|;n—p=i=o0 = 1:

k! u-l i
E™= ZD'e {Z(m—-n) At S +6r  or= (# i / (t™ — )P tabt w(t)de.
=0
Next, since:
W= Y 1)"—"*(“"_“)(m—n)'= 0< i<
m=n—1—jn n /
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it follows after some re-indexing that:

i (1) (un+1)E _

m=n—1-un m
ol Dle £ 7?—1 i, nri - n-m | Bnt1 lm
z { Z ( — l)|atw k? + Z (—1) n— k Gl }

=0 I J=l+pn+1 m=n—1-u, m

where ill-defined sums are understood to be zero. Now, by Lemma 3.3:
K 18]w™ln < ekt |ullg(ut1) pn+1<j<p

KNG < ck(k¥ + hk*™F + h2E#1)|[u0]|3(u 1) 0<li<p-1
Hence:
= — n 1 m —_ = -
[ D €5 § ki (# +m )E llp < ck(k#~ + REF3 4+ h?kH D102 (ut1)-
m=n-1-pu,

Also, by (3.24):

U™, < ck(hk# % + B2 ) [llyuesy  m-1-paS<m<n.

Then (4.22) follows from the last two inequalities.
Lemma 4.7 6} of (4.18) satisfies:
(4.23) 1651l < ck(k* + h*k*~ 1) |u®ll2us1)-

Proof. As in the proof of Lemma 3.5:
p—1

o™ — ew™ — kA Z I'Tediw(r™) = E™ — F™, E™=

= = 1)|/ (k — s)*~1aka™(s)ds
i=0

and by (1.35):

# u—1
m k ADF leghyym 4+ k

T
= — — AI‘me/ Y — )P 19R (8 dt = FM + FI
(p—1 t (u—l)!'z;; i tm(' ) ¢ w(t) 1 2

First, using (3.2):

131l < ¢ i (UE™ +NE) + el Zn: (=)™ ( o t 1 ) F.

n—-—m
m=n—1—pup, m=n—1—pun

Then, with (3.24): )
IE™| < ch?kH||u)2u n—1-pp<m<n

Also, by Lemma 3.3:

IF5M] < ck(k® + B2E*1)[[u0lz(us) n—1-—p, <m<n
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Finally, note that:

n o
Z (_l)n—m ( Nn—'l‘ 1 ) F{n - k |AD[J—le
m=n—1—p, n—-m (I“' - 1)

x{ Zn: (_l)n—m( nlinm )/::lafﬂu(t)dt _ i (-1)m-m ( dn+1 )af’?m}-

m=n—u, m=n—1—pn n—m
So, by (1.4) and (1.19):
n pn + 1
I Y oy ( o ¥ 1 ) F < k(BB 4 1) [0l gur)-
m=n—1—pn

Now, (4.23) follows after combining the last four inequalities. . =
Next, the above lemmas are combined with (4.13) for the estimation of the term k||| T- U212,
in (4.19).

Proposition 4.3 With U} defined by (1.40) and U by (1.46), the following hold:

n—1
kT - OpN2 < ck™*82 > {II0R — T3, + lle™ - ¢™II%}
(4.24) m=n—1-un

n—1
+ekBE ST |ls™IE, + ck[(AT + k# + hE*T3 + R2EFY)|[u042 1<n<n* -1,
m=n—1-—pin
(4.25) TR = TRlllo < ck[|6°]la-
Proof: By (1.46), (4.13) and (3.6):
07 - 7l < cBETp - Voll,  O<n<a-L

Then, combining (4.20), (4.21), (4.22), and (4.23) for (4.18) leads to:

n-—-1 n—1
Wor -V, < 2 TR =Tl + ls™ =™} +ck - 22 g™
m=n—1-p, m=n—1-pn
+ck(h™ + kPn + hk* 7 + R2EF1)]|u0|, 1<n<n*-1.

From (4.14) and (1.43), it follows that:
,BL"k"" < ck* 0<n<n*-1.
Finally, (4.24) follows after combining the last three inequalities. Also, by (3.2), (3.31), and (3.18):
TR = Mo < €llTRlllo < ells®llo + ellle®llly < ellw’lla

and (4.25) follows after combining this with the two estimates above including the case n=0. =
Now, {4.24) demands an estimation of the differences |ll¢"*1 — ¢"|Il  and this is the content of

the following.
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Proposition 4.4 If (1.29) and (1.80) are satisfied, then the following holds:

) eallls™ = gmIE + 1T — et )Eem YR < cak?llsmIIE + ellOp — TR
(4.26

+(1 -+ csk)IL — rF13e7 7 + ck2[(h + k* + hk*F + 2 ) |udllo)? 0<n<nt -1
Proof. The following is established after some straightforward calculations:

(7 + KL+ rf et = g g™ = 6]+ (L 4+ RLRFHIT — s+ gmt, gni)
(4.27)
— 2([I+ kL2+1][§"’+1 n+1 n] [§n+1 n]) + ([I-i- ka'H][I _ ’:+1]§n;§n)-

By (1.29) and (3.6), there is a ¢; > 0 such that:
(428)  (I1+ P JL+ RLRF 3™ — o) [T+ RLRHE (™ - 6)) 2 26 g™ — 7|2,
Next, using (3.6):

2017 + kLR ™ — rpthen], [+ — D] < ellle™ = rp e lalls™ = ¢l

< elle™t — RE¢™IL + elll[RR — rRls™lin + clllri*™ = rRls™ll7 + eallis™ = ™I
Combining (3.25), (3.27), (3.28) and (3.29) for (4.17), it follows that:

5™ = RES™lla < ch(h” + K + hk*™% + B2k~ [ula + elITF = TRl
Combining the last two inequalities with (3.7) and (3.8), the result is:

211+ kLPHY [+ — ritlen) (vt — )| < ek?||6™(|12 + el TR — TRIl2
(4.29)
+ek3[(R7 + k# + hk#~ 3 4 R2E 1) ||uo]? + eaffl¢™F - 12

For the last term in (4.27), suppose first that (1.27) holds. After some calculations:
(430)  ({[T+ELRPIL = it = [T+ BRI = rfl}s™, ¢™) = (B(RLR) 36", (RLR)3¢™)
where:

(RLR)™ 3[R — r (LR + (TR LR (TR 3R LR) 3 [ — rf ) (LR) 3

IR R — LRI 3T - rl.
By (3.8), (2.15), (1.13), and (1.26):
(431) IBxl < ckllxll  Vxe S
Next, define r.(z) = [1+ 2]/[1 + (1 — €)z] with € > 0 small enough that with (3.11) and (1.27):

(1+ez)(1-62) 0<z<2z
relz)r(2)} < <1.
e @) (1 - €)™ sup|r(z)| n<z

22z
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Hence:
e(kLpx, x) < (I + kLRI — r3]x, x) Vx € Sh.
Combining this with (4.30) and (4.31):

(432)  |({[T+ kLRI — w31 = [T+ RIRNT — #R]}s™, "] < ee k([T + KLR](T — rR]e™, ™).

Finally, for the case that (1.27) holds, (4.26) follows after combining (4.28), (4.29), and (4.32) for
(4.27). Now, assume that (1.27) fails, so that r(co) =1 — 5T A~1e = 1. Nevertheless, by (1.30) and
(1.11), [I — r}] is positive and invertible, so define:

Fn= I+ kL] -} and F? = (KLY + kLR 27,
Then, instead of (4.30), the following is used:
({1 + kIR = w31 = [T+ RLRIT = rR]Ye™,6™) =
(4.33) . . . . N .
(FI(KLR)™7 + (KL})?][Fasr — Fal[(KL}) ™2 + (KLR) 3] FFACT, Fag™)

From (1.30), it follows that:
(4.34) 1Ex]l < ellxl VX € Sh.

Next, since TA7le =1 — r(c0) = O
rp =T - bT AN (KALY)[T + kALR] YYe= I+ bT A7 I+ KALY] e
and hence:
Fn=—bTA 2e+6TA (A" - I)[I+ KAL) te.
Therefore:

Frt1 — Fn = BT(1 = AT+ kALY N RLDF((T) 5 (LPFY - LR)(T) FNLR) T[T + kALY e
So by (3.3) and (2.15), for 8y, 62 = +3:
| (6LP)P [Frt1 — Fal (RLE)2 x| < k|| x| VX € Sh.

Combining this with (4.34) for (4.33) gives (4.32) and hence (4.26). =
Finally, the convergence result (1.5) is established for (1.46) as follows.

Theorem 4.1 Let the conditions of either Proposition 4.1 or 4.2, in addition to those of Lemma
8.1 and Proposition 4.4 be satisfied. Then, {ja}r_g' can be chosen so that (4.13) and (4.14) hold
and provided eq > 0 is small enough, the approzimations {UL}"—, obtained by (1.37) and (1.46)
satisfy:

(4.35) max ||UR —u"|| < *(R"+ k¥ + hk*" % + h2 kP 1) |60

0<nin*

Also, unless ¢ < 0 in (4.19), ¢* depends ezponentially on t*.

33



Proof: Add c;|||T7—Up||? to both sides of (4.26) and multiply the resulting inequality by ek~—1¢™*+1.
When this is added to (4.19), the result is:

- 7 7 - 1
6™ 12 + cxck™2em Ll — 2 + (107 — DRI} + ek e[ - e t2,
< (14 Bk + cackt™ V) [g7 |2 + ck 2|07 = DRI + ekl(A” + k% + Rk~ 5 + h2Es=1) [u0] 2

+[ek~ 11 (1 + csk) — col|l|[T — rP13¢™I1% 1<n<n' -1
Now, for the compression of this inequality and others below, let the following be defined:
z~ =l D™= ||+t — ¢mI% + 1T — TR,
s™ =1 - rRl3cnI E = [( + Kk + Rk 5+ B2 u) ]
With this notation, the following results after estimating ck™||Uf — UZ||2 with (4.24):

ZWY ook lett I DI 4 g~ 1S < (1 4 Tk + cpekt*) 2
-1
+eaf D [kTID™ + kZ™] + ckE + [k + (1 + cst*) — ¢o]S" 1<I<n*—1.

m=l—1-

Now, assume that € > 0 is chosen small enough that e(1 + ¢st*) < co. In fact, if ¢ < 0, suppose
that for some & < 0, 1+ &k + coekt* < 1+ ¢k. Otherwise, if € > 0, take & > 0 in the following. Now,
after summing the last inequality over 1 <! < n < n* — 1, the result is:

n n
(Z"'H _ Zl) + ek—l(t"+15"+1 _ tlsl) + clek—lztl+1Dl+l < 'ékZZl

=1 =1
n -1
+C4Zﬂ,2 E [kZ™ + k" 1D™ ] + ct*E 1<n<n*-1.
=1 m=l-1-y
By (4.14) and (3.31), for1<n<n* - 1:
n n -1 n n
kS Z 4 ekd B Y. Z™ < (8+ cuso(p+ 1)tN)kY 2+ ckZ® < kY Z'+ ckE

=1 =1 m=il-1—-py =1 =1

where ¢ < 0if & < 0 and 9 > O is small enough. Otherwise, take ¢ > 0 in the following. Next, since
(+1)/(m+1) <p+2if0<I—1— < m<I-1, it follows using (4.14) that for1 <n < n* - 1:

n -1 n -1 n
_ _ 1+1 _
ek ™Y B D D™V < cikleny SH L mripmtt < ook 13y ¢H+1pHt 4 oDl
m+1
=1 m=l-1-y I=1m=l-1-u; =1

Combining the last three inequalities, for 1 <n < n* —1:

n n
Z™ 4o ek IS™ L 4 (e — cseo)k"IZtH'lDH'l <(Z'+eS'+ cDY) + ct*'E + EkZZl.
=1 =1
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By (3.6), (4.26), (4.25), (1.26) and (3.31):
Z' +[S' + D' < [eD* + 2% + [S' + D' < ¢(1 + k®)[2° + E] + (14 ¢ck)S° < ¢(2° + E) < ¢E.

Now, assume that €5 > 0 is chosen small enough so that:

n
g™ Y12, 1 < ct*[(h" + k¥ + hk#~F 4 R2kF-1)|[u0) |2 + 2k |16t 0<n<n'-1L
=0

If @ < 0, ignore the last sum and (4.35) follows after (1.19). If ¢ > 0, then (4.35) follows with the
discrete Gronwall Lemma and (3.31), but with ¢* depending exponentially on ¢*. [ |

5 Examples.

The principal aim of this section is to present some computational results showing the strength
of methods analyzed in this work. However, it is appropriate to first indicate that the set of
IRKM'’s which satisfy the many conditions imposed in foregoing proofs, is by no means vacuous.
For example, in [15], it is explained that there exist g-stage methods of order ¢ + 1 and satisfying
(1.26)-(1.32) and (1.44), provided ¢ = 1,2,3, or 5. Furthermore, [15] gives explicit constructions
of families of such methods for ¢ = 2 and 3. On the other hand, it is shown in [15], that for every
positive integer g, there exists a collocation type IRKM satisfying (1.27), (1.29)-(1.32), and (1.44).

As mentioned in the Introduction and more carefully in [15], the preferred methods in a parallel
environment are those for which the eigenvalues of A are distinct. These have been referred to
as multiply implicit (MIRK) methods. Further, they are called real if 0(A) C R, and otherwise
complex. While the latter case has not been studied here, it is discussed in [15]. By considering
that discussion together with the results of Bramble and Sammon (3], it can be seen that complex
MIRK’s can be analyzed using quadratic preconditioning and hence inverse assumptions.

In contrast to MIRK’s, there are the well-known methods for which the eigenvalues of A are
identical and real. [12] As seen in (4.9), these so-called singly implicit (SIRK) methods offer a
computational advantage on serial machines since at each time step, they require the formation of
only a single new matrix with the dimension of S. A selection from this set of methods was made
for the example considered below.

The following problem is of the class defined in the Introduction:

diu = —L{t)u in (-1,1)x[0,.1]
u =0 on {-1,1} x[0,.1]
u(z,0) = 1-z! in (-1,1)
where:
L(t)u = —8,(4(z,t)9;u) + £o(z, t)u,
b(z,t) = i5log(2)(3 - 2? (24 2B, to(z,t) = log(2 + 2) — Llog(2)(2 + 2%)"-

(2+ z%) +t(1 — 22)

The solution is given by:



| k,h | CPU Time (sec) | L error (x10°) | Order |

1/50 22 1.19

1/60 30 525 4.49
1/70 38 266 4.42
1/80 48 148 437
1790 59 .0889 433
1/100 72 .0565 430

Table 1: Modified method

[ k,h | CPU Time (sec) | L; error (x10°) | Order |

1/50 22 285

1/60 31 16.0 3.16
1/70 41 9.80 3.19
1/80 52 6.36 3.23
1790 65 435 3.24
1/100 7 3.09 3.24

Table 2: Classical method

For the spatial discretization, the Ordinary Galerkin Method was used and Sj, was constructed of
smooth cubic splines defined on a uniform mesh. For the temporal discretization, the well-known
three-stage diagonally implicit (DIRK) method was used as it satisfies (1.26)-(1.32). [8]

Now let (1.46) be identified as the modified method, and an analogue based on (1.39) as the
classical method. In addition, let a hybrid method be given by (1.46), but with D! replaced by T in
(1.35). These three methods were tested on the ICASE SUN 3/180. Defining E(h, k) = || U} —u™ ||,
the Ly errors E(k) = E(k, k) are reported in Tables 1 - 3, together with estimates of the convergence
order obtained according to the formula: log(E(kz)/E(k1))/log(kz2/k1).

With regard to time consumption, recall that the computational burden for the classical method

| k,h | CPU Time (sec) | L, error (x10°) [ Order |

1/50 23 283

1/60 30 15.8 3.21
1770 38 9.61 3.21
1/80 49 6.25 3.22
1/90 59 4.28 3.22
1/100 71 3.04 3.23

Table 3: Hybrid method
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is in forming ¢ new stiffness matrices at each time step. On the other hand, with the constants
{5,',‘,}85",”%'::__11 chosen in the natural way as indicated in the Introduction, the burden for the
modified method is in forming the terms ¢; of (4.7), for the right side of (4.9). Also, the initial
steps are relatively expensive, but the effect of this diminishes as the number of time steps increases.
Note that among the three methods tested, numbers for the modified method were obtained with
greater speed and accuracy, as well as with fourth order convergence. On the other hand, the
others suffer from suboptimal convergence as explained in the Introduction. However, no rigorous
explanation can be offered for the identical accuracy obtained by the classical and hybrid methods.
Further, this author is unaware of any proof of the better than second order convergence seen in
Tables 2 and 3. In this connection, note that the above solution has no time derivatives which are
even in the domain of L(t)?, a condition considered necessary to escape order reduction in a general
way. Nevertheless, only second order convergence is demonstrated for example, in Experiment 7.5.1
of Dekker and Verwer (8], where a stiff ordinary differential equation is considered. Further, the
modified method has been applied to this problem to give not only fourth order convergence, but
accuracy exceeding that reported for any method discussed in the Experiment.
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